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Thermal performance of micro-pin fins of variable diameter and rough surface is calculated by means of
an approximate procedure based on truncated power series. The geometric effect of roughness is
modeled after Bahrami et al. [9], which greatly increases the intricacy of the fin equation, preventing its
analytical solution even by symbolic computer codes. The approximate series solution is developed
firstly by estimating an adequate number of terms based on convergence to the (known) exact solution of
smooth pin fins of the same geometry. Then, residual convergence for an increasing number of terms is
studied for the rough fin. Three selected geometries are analyzed, of hyperbolic, trapezoidal and concave
parabolic profiles. Influence of surface roughness is evaluated for a wide range of heat transfer condi-
tions; results are discussed in terms of the two primary quantities of interest in fin design, viz., efficiency
and effectiveness. Due to the easiness of the present methodology, it can be safely applied to other
geometric arrangements involving straight and annular fins.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

A widely used method to enhance heat transfer from walls and
tubes to surrounding fluid streams consists in the attachment of pin
fin arrays to the surface [1,2]. In this framework, numerous appli-
cations can be cited: air-cooled engines, gas–gas or gas–liquid
compact heat exchangers, condensers, evaporators, etc. More
specifically, applications of micro-fins are continuously rising with
ever-increasing requirements for heat transfer dissipation along
with severe space and weight limitations. This is the case of
microelectronic heat sinks [3], gas turbine blades [4] or thermal
actuators [5].

Surfaces manufactured by MEMS technologies usually have
some level of roughness [6], strongly dependent on the fabrication
process or the materials used. The role of roughness in heat transfer
increases as the size of the equipment decreases. Separate experi-
mental works [7,8] have pointed out the heat transfer augmenta-
tion introduced by roughness in square and cylindrical pin fins of
constant thickness. The geometric effect of roughness has been
modeled by Bahrami et al. [9] for the cylindrical, constant-diameter
geometry. Analyzing the variation in average cross-sectional and
þ34 976 732078.
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lateral areas, a modified 1-D temperature equation was developed,
whose solution showed an increase in heat transfer rate. To the
present authors’ knowledge, this work is the only one dealing with
the problem.

The objective of this paper is to move forward the mathematical
analysis into the study of rough micro-pin fins of variable diameter.
Chyu et al. [10] refer to different pin fin shapes as an alternative for
cooling; the critical geometric parameters that influence heat
transfer from a fin array are diameter, length, inter-fin spacing and
fin profile. Concerning the latter, there is a subset of tapered profiles
capable of transferring larger amounts of heat per unit cross-
sectional area at the base than the constant-thickness fin. Among
these they are the hyperbolic, convex parabolic and concave para-
bolic profiles [11].

We arbitrarily select for this study three realistic, truncated pin
fin geometries of trapezoidal, hyperbolic and concave parabolic
profiles. We deduce the differential equations governing their 1-D
temperature distribution by introducing a random isotropic
surface roughness and following the method of Ref. [9]. We rule
out to manage the exact analytical solution of these equations,
since they are highly intricate and likely error-prone. Alternatively,
we suggest the implementation of the approximate power series
method as a simple way to obtain accurate predictions of the
performance of the pin fins. Results are presented for the
convergence of the power series and the effect that the roughness
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Nomenclature

Ab cross-sectional area at the fin base, m2

Ac cross-sectional area of the fin, m2

Ac average cross-sectional area of the rough fin, m2

As surface area of the fin exposed to convection, m2

As average surface area of the rough fin exposed to
convection, m2

Bi Biot number, given by 2rbh/k
E fin effectiveness
e convergence error
f fractional error, as defined by Eq. (52)
h uniform convection coefficient, W m�2 K�1

In modified Bessel function of first kind and order
n¼ 0, 1, 2

Kn modified Bessel function of second kind and order
n¼ 0, 1, 2

k fin thermal conductivity, W m�1 K�1

L fin length, m
m thermo-geometric parameter, m�1

ms mean absolute surface slope
M2 extended Biot number, as defined by Eq. (20)
n number of terms retained in the shortened power

series
P fin perimeter, m
q heat transfer rate, W
qideal ideal heat transfer rate, W
r fin radius, m
r average radius of a rough fin, m
rd random variation of the fin radius in the angular

direction, m
rb radius at the fin base, m

rL random variation of the fin radius in the longitudinal
direction, m

rt radius at the fin tip, m
T temperature, K
Tb base temperature, K
TN fluid temperature, K
x longitudinal coordinate, m
xb location of the base for the hyperbolic fin, m
xt location of the tip for the hyperbolic fin, m
z longitudinal coordinate, m
zb location of the base for the trapezoidal and concave

parabolic fins, m
zt location of the tip for the trapezoidal and concave

parabolic fins, m

Greek symbols
3 relative roughness, as defined by Eq. (27)
f dimensionless coordinate, as defined by Eq. (16a)
h fin efficiency
l length of the arc of the fin profile, m
q dimensionless temperature, as defined by Eq. (14a)
s isotropic surface roughness, m
sd fin surface roughness in the angular direction, m
sL fin surface roughness in the longitudinal direction, m
u geometric ratio, as defined by Eq. (16b)
x geometric ratio, as defined by Eq. (14c)
j dimensionless coordinate, as defined by Eq. (14b)

Subindexes
h hyperbolic
p concave parabolic
t trapezoidal
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bears on the fin efficiency and effectiveness, under different heat
transfer conditions and geometric parameters of the pin fin.
Analysis is pursued in dimensionless form, in order to cover a wide
range of cases.
2. Formulation for pin fins of variable profile and smooth
surface

For a constant thermal conductivity k and a uniform convection
coefficient h, the steady-state temperature descent along a thin,
truncated pin fin of a variable radius r(x), like those illustrated in
Fig. 1, obeys the quasi 1-D fin equation

d2T
dx2 þ

1
Ac

dAc

dx
dT
dx
� hP

kAc
ðT � TNÞ ¼ 0 (1)

where Ac and P are cross-sectional area and perimeter, given by

AcðxÞ ¼ prðxÞ2 (2)

PðxÞ ¼ 2prðxÞ (3)

In Eq. (1), we adopt the length-of-arc approximation: (dr/dx)2�1,
so that the derivative of lateral area can be substituted by
perimeter, dAs/dx z P, in the last term. This assumption is very
common in fin theory and completely reasonable for normal,
slender fins.
Imposed boundary conditions are also those common in fin
analysis, namely, prescribed temperature at the fin base and
negligible heat loss at the fin tip:

Tjx¼xb
¼ Tb (4a)

dT
dx
j
x¼xt

¼ 0 (4b)

Fig. 1 sketches the three geometries of truncated pin fins
selected to carry out the present study: hyperbolic, trapezoidal and
concave parabolic pin fins. The hyperbolic pin fin is created with
a smooth profile of variable radius:

rhðxÞ ¼ rb
xb

x
(5)

Substituting this radius into Eqs. (1)–(3), we get the differential
equation for the temperature descent along x (in xb� x� xt):

d2Th

dx2
� 2

x
dTh

dx
� 2

x
xb

m2ðTh � TNÞ ¼ 0 (6)

where m is the thermo-geometric parameter, given by

m2 ¼ h
krb

(7)

To obtain the differential equation for the trapezoidal and
concave parabolic pin fins, we firstly introduce for convenience the
longitudinal coordinate z (see also Fig. 1):



Fig. 1. Sketches of the truncated pin fins of variable profile: a) hyperbolic, b) trape-
zoidal, c) concave parabolic.

dqt

df
j
f¼u

¼ 0;
dqp

df
j
f¼u

¼ 0 (18b)
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z ¼ zb � x (8)

which transforms Eq. (1) to

d2T
dz2 þ

1
Ac

dAc

dz
dT
dz
� hP

kAc
ðT � TNÞ ¼ 0 (9)

where it is understood that Ac(z) and P(z) are calculated as in Eqs.
(2) and (3) with z replacing x. Trapezoidal and concave parabolic
pin fins are then created with smooth profiles of variable radius
given, respectively, by

rtðzÞ ¼ rb
z
zb

(10)
rpðzÞ ¼ rb
z
z

2

(11)

�

b

�

The corresponding differential equations are (in zt� z� zb):

d2Tt

dz2 þ
2
z

dTt

dz
� 2

zb

z
m2ðTt � TNÞ ¼ 0 (12)

d2Tp

dz2 þ
4
z

dTp

dz
� 2

z2
b

z2m2�Tp � TN

�
¼ 0 (13)

where the thermo-geometric parameter m is defined by Eq. (7).
Upon defining dimensionless temperature q, dimensionless

coordinate j and geometric ratio x in this way:

q ¼ T � TN

Tb � TN
(14a)

j ¼ x
xt

(14b)

x ¼ xb

xt
(14c)

the equation of the hyperbolic pin fin, Eq. (6), transforms (in
x� j� 1) to

d2qh

dj2 �
2
j

dqh

dj
� 2

x3
t

xb
jm2qh ¼ 0 (15a)

Analogously, dimensionless forms of Eqs. (12) and (13) become
(in u� f� 1):

d2qt

df2 þ
2
f

dqt

df
� 2

z2
b

f
m2qt ¼ 0 (15b)

d2qp

df2 þ
4
f

dqp

df
� 2

z2
b

f2m2qp ¼ 0 (15c)

where q is the same, Eq. (14a), and the other dimensionless vari-
ables are given by

f ¼ z
zb

(16a)

u ¼ zt

zb
(16b)
In dimensionless terms, boundary conditions for the hyperbolic
pin fin are:

qhjj¼x ¼ 1 (17a)

dqh

dj
j
j¼1
¼ 0 (17b)
whereas for the trapezoidal and concave parabolic pin fins we get

qtjf¼1 ¼ 1; qpjf¼1 ¼ 1 (18a)
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A convenient alternate form of Eq. (15) is
j
d2qh

dj2
� 2

dqh

dj
� 2M2

hj2qh ¼ 0 (19a)

f
d2qt

df2
þ 2

dqt

df
� 2M2

t qt ¼ 0 (19b)

f
d2qp

df2 þ 4
dqp

df
� 2

f
M2

pqp ¼ 0 (19c)

where M2 is an extended Biot number defined as

M2
h ¼

x3
t

xb
m2 ¼ x3

t
xb

h
krb

(20a)

M2
t ¼ M2

p ¼ z2
bm2 ¼ z2

b
h

krb
(20b)

The exact solution of Eq. (19) subjected to the boundary conditions
in Eq. (17) or (18) has been determined with the symbolic code
Mathematica 5.2 [12]. After the algebra is done, dimensionless
temperature distributions are obtained for
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2) the trapezoidal pin fin,

qtðfÞ ¼
1
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3) the concave parabolic pin fin,

qpðfÞ ¼
	�
� 3þ
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(21c)

In the preceding equations, In and Kn stand for the modified Bessel
functions of first and second kind and order n¼ 0, 1, 2 [13].

Usually the heat transfer rate q from fins to a fluid is computed
indirectly with the fin efficiency, given by

hh ¼
qh

qideal
¼ qh

hAsðTb � TNÞ
¼ �k

h
Ab

As

1
xt

dqh

dj
j
j¼x

(22a)

ht ¼
qt

qideal
¼ qt

hAsðTb � TNÞ
¼ �k

h
Ab

As

1
zb

dqt

df
j
f¼1

(22b)

hp ¼
qp

qideal
¼ qp

hAsðTb � TNÞ
¼ �k

h
Ab

As

1
zb

dqp

df
j
f¼1

(22c)

where Ab is the cross-sectional area at the fin base and As is the
surface area of the fin exposed to convection.

Another variable of comparable interest in the thermal analysis
of fins is the so-called fin effectiveness, defined as:
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Eh ¼
qh

hA ðT � T Þ ¼ �
k
h

1
x

dqh

dj
j (23a)
Fig. 2. Details of cross- and longitudinal-sections of a generic pin fin of variable profile
and rough surface.

¼ s

rb
(27)
b b N t j¼x

Et ¼
qt

hAbðTb � TNÞ
¼ �k

h
1
zb

dqt

df
j
f¼1

(23b)

Ep ¼
qp

hAbðTb � TNÞ
¼ �k

h
1
zb

dqp

df
j
f¼1

(23c)

It is clear that the numerical evaluation of the dimensionless
temperatures q with Eq. (21), fin efficiency h with Eq. (22) and fin
effectiveness E with Eq. (23) –for which the evaluation of the
temperature derivative at the base is required–, constitutes a rather
laborious and error-prone task. Certainly, these drawbacks are even
more pronounced when the surface roughness is incorporated into
the analysis, a feature that necessitates very complex differential
equations and, consequently, more intricate exact solutions. This
difficult topic appears in the following section wherein the power
series method will be adopted.

3. Calculation of micro-pin fins with rough surfaces

A micro-pin fin of variable average radius rðxÞ is considered now
(see Fig. 2). Following [9] strictly, we assume that the surface
roughness is random and obeys a Gaussian probability distribution,
both in the angular and longitudinal directions. The picture in Fig. 2
is intentionally not scaled; the surface irregularities actually are
shallow variations of the surface height and slope.

Under this circumstance, an exact value of the local radius
cannot be used for calculating temperatures in rough fins. There-
fore, probabilities for specific radii have to be managed. For this
purpose, the radius at every point (x, q) of the variable-profile pin
fin is defined as

rðx; qÞ ¼ rðxÞ þ rd þ rL (24)

where rd and rL stand for random variables used to represent the
variation around the mean radius rðxÞ along the angular and the
longitudinal directions, respectively. The standard deviation of rd is
the surface roughness sd in the angular direction and the standard
deviation of rL is the surface roughness sL in the longitudinal
direction; both quantities follow a Gaussian probability distribution
given as

QðrdÞ ¼
1ffiffiffiffiffiffi

2p
p

sd

exp

 
�

r2
d

2s2
d

!
(25a)

QðrLÞ ¼
1ffiffiffiffiffiffi

2p
p

sL
exp

 
�

r2
L

2s2
L

!
(25b)

Eq. (24) means that the value of local radius is a double superpo-
sition of random independent variations around the mean, taking
the probability distributions from Eq. (25). In a general case, the
standard deviations of rd and rL can be different. Nevertheless, we
are going to postulate the simplification pertinent to isotropic
roughness, that is, s¼ sd¼ sL.

Surface roughness produces geometric modifications of the fin
that have an effect in heat transfer. If the roughness profile is
random and their peaks and valleys are of a magnitude much
smaller than the macroscopic dimensions (i.e., the relative rough-
ness is 3¼ s/r� 1), a statistical model can be conceived. It is based
on the fact that, for the conditions given, every particular
realization of the rough surface can be represented by its average
dimensions, and that this average is equivalent to the statistical
mean.

In this way, the model of Ref. [9] essentially consists in taking
probabilistic averages of the coefficients of the fin equation, e.g., Eq.
(1) above. This ‘‘average fin’’ is subsequently solved and the result
compared to the corresponding smooth case to ascertain the effect
of roughness. The analytical derivation then amounts to calculate
averages for the cross-sectional area Ac, the surface area exposed to
convection As and their axial variations.

The average cross-sectional area can be calculated from the
expression

AcðxÞ ¼ prðxÞ2 ¼ p

ZN
�N

ZN
�N

½rðxÞ þ rd þ rL�2QðrdÞQðrLÞdrd drL

(26)

where the integral limits range from �N to N, since an unclipped
Gaussian distribution has been adopted. Obviously, the probability
for such small/large values is quite low. If a change of variables is
carried out, ud¼ rd/s and uL¼ rL/s, and the relative roughness 3 is
specified by using the radius at the fin base,
3



Fig. 3. Length-of-arc idealization in rough micro-fins.
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Eq. (26) can be transformed to

AcðxÞ ¼
1
2

ZN
�N

ZN
�N

	
rðxÞ
rb3
þ ud

þ uL

�2

exp

 
�

u2
d

2

!
exp

 
�

u2
L

2

!
s2dud duL (28)

Taking into account that the average of ud and uL is nil, and that the
average of their squares is, by definition, s2, the integral can be
easily solved:

AcðxÞ ¼ prðxÞ2þ2pr2
b32 (29)

Now, we may denote by AcðxÞ ¼ prðxÞ2 the cross-sectional area of
the smooth pin fin whose radius is the same as the average radius of
the rough pin fin. Dividing by it, the following factor results as
a modifier of the corresponding coefficients in the fin equation:

AcðxÞ
AcðxÞ

¼ 1þ 2
�

rb

rðxÞ

�2

32 (30)

We see that the effect of roughness is to increase the circular area
by the small amount ps2, which, under symmetric, zero mean
probability distributions, is obviously an effect of curvature.

To proceed with the remaining coefficients, we need another
parameter pertaining to the surface roughness that is not specified
by the probability distribution of the radius. It is the mean absolute
surface slope of the roughness component, defined as

ms ¼
1
L

ZL

0

jvðr � rÞ
vx

jdx (31)

The average value of dAc/dx can be then calculated as

dAc

dx
¼ 2pr

vr
vx
¼ 2p

�
r
dr
dx
þ r

vðr � rÞ
vx

�

¼ 2pr
dr
dx
þ 2pr

vðr � rÞ
vx

z
dAc

dx
þ 2prðxÞms (32)

In the last step, the average value of the product of the radius times
the surface slope is approximated by means of the parameter ms.
Eq. (32) indicates that a second effect of surface roughness on the
average pin fin is to induce an additional axial (x) increase of the
cross-sectional area.

Finally, as it is evident, the fin lateral area and apparent
perimeter will also increase due to the increase of the length of arc
of the profile dl. This can be estimated as

dAsðxÞ ¼ 2prdlz2pr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

s

q
dx (33)

PðxÞ ¼ dAs

dx
z2pr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

s

q
(34)

so that, for a smooth perimeter PðxÞ ¼ 2prðxÞ, the factor for the
equation is

PðxÞ
PðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

s

q
(35)

As in Ref. [9], we note at this point that Eqs. (32)–(35) are only
reasonable approximations in terms of the simple parameter ms, an
essentially empirical piece of information that can be found in the
literature addressing surface finishing [14]. Actual correlation
between radius and slope in Eq. (32) and total length of arc in Eqs.
(33)–(35) are obviously susceptible to dedicated measurement,
which would result in precise values, but this is out of the scope of
this study.

Concerning the variable-profile pin fins, in Eqs. (33) and (34), we
have adopted the usual approximation for a slender fin that
ðdr=dxÞ2 � 1, so that the smooth length of arc is approximately dx.
(This is coherent with all the fin equations written above.) It might
appear at a first glance that the approximation is valid only when
the roughness-induced slope is m2

s[ðdr=dxÞ2, since otherwise the
factor must be either

PðxÞ
PðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dr
dx

�2

þm2
s

s
(36)

or unity. In other words, either the roughness has no effect within
the length-of-arc approximation or the approximation cannot be
invoked when treating rough fins. The latter possibility is highly
undesirable, because the fin equation will then become much more
intricate. Fortunately enough, we should remember that ms is an
average. Even in the common case that m2

swðdr=dxÞ2, this
expresses only a finite-distance average. Locally at every x, we can
expect a much larger effect from roughness than from the average
profile slope, as it is graphically illustrated in Fig. 3. Consequently,
the length-of-arc approximation is always warranted for the
smooth, base profile, and Eqs. (33) and (34) are fully coherent.

Substituting Eqs. (30), (32) and (35) in the fin equations of the
class of Eq. (1), we get differential equations describing the
temperature change in rough micro-pin fins of truncated hyper-
bolic, trapezoidal and concave parabolic profiles. They are, in full
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d2Th

dx2 þ 232
�

x
xb

�2d2Th

dx2 �
2
x

dTh

dx
þ 2ms

rb

x
xb

dTh

dx

�2
x
xb

m2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

s

q
ðTh � TNÞ ¼ 0

(37a)

d2Tt

dz2 þ 232
�zb

z

�2d2Tt

dz2 þ
2
z

dTt

dz
� 2ms

rb

zb

z
dTt

dz

�2
zb

z
m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

s

q
ðTt � TNÞ ¼ 0 (37b)

d2Tp

dz2
þ 232

�zb

z

�4d2Tp

dz2
þ 4

z
dTp

dz
� 2ms

rb

�zb

z

�2dTp

dz

�2
�zb

z

�2
m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

s

q �
Tp � TN

�
¼ 0 (37c)

Invoking the same non-dimensional variables and coefficients
as above, we get

j
d2qh

dj2 þ 232
�

xt

xb

�2

j3d2qh

dj2 � 2
dqh

dj
þ 2

x2
t

xbrb
msj2dqh

dj

�2M2
hj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

s

q
qh ¼ 0 (38a)

f
d2qt

df2 þ 2321
f

d2qt

df2 þ 2
dqt

df
� 2

zb

rb
ms

dqt

df

�2M2
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

s

q
qt ¼ 0 (38b)

f
d2qp

df2 þ 232 1

f3

d2qp

df2 þ 4
dqp

df
� 2

zb

rb
ms

1
f

dqp

df

�2M2
p

1
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

s

q
qp ¼ 0 (38c)

At this point, it is easy to check that for a smooth pin fin (3 / 0,
ms / 0) the set of Eq. (37) reduces to the set of Eqs. (6), (12) and
(13), and likewise the set of Eq. (38) to that of Eq. (15). We do not
purportedly provide exact solutions of these equations, because
their forms are much more intricate than the solution for smooth
pin fins, Eq. (21). This a side-effect of the roughness model we
have applied. Alternatively, the power series method facilitates
accurate approximations in an easier way. Before doing that, we
rearrange Eq. (38) in order to streamline the nomenclature in
forthcoming sections:
j
d2qh

dj2
þ 2ahj3d2qh

dj2
� 2

dqh

dj
þ 2bhj2dqh

dj
� 2chj2qh ¼ 0 (39a)

f2d2qt

df2 þ 2at
d2qt

df2 þ 2f
dqt

df
� 2btf

dqt

df
� 2ctfqt ¼ 0 (39b)

f4d2qp

df2 þ 2ap
d2qp

df2 þ 4f3dqp

df
� 2bpf2dqp

df
� 2cpf2qp ¼ 0 (39c)
where the participating coefficients a, b and c are given by

ah ¼ 32
�

xt

xb

�2

; at ¼ ap ¼ 32 (40a)

bh ¼
x2

t
xbrb

ms; bt ¼ bp ¼
zb

rb
ms (40b)

ch ¼ M2
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

s

q
; ct ¼ M2

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

s

q
; cp ¼ M2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

s

q
(40c)

4. Power series solutions

Analytic solutions of Eq. (39) are sought in terms of the
following power series:

qhðjÞ ¼
XN
i¼0

aiðj� 1Þi (41a)

qtðfÞ ¼
XN
i¼0

aiðf� 1Þi (41b)

qpðfÞ ¼
XN
i¼0

aiðf� 1Þi (41c)

where the coefficients ai (i¼ 0,1,., N) are real numbers connected to
each pin fin geometry. The domain of the dimensionless temperature
q is generally referred to as the interval of convergence of the power
series. The theory specialized on the existence, uniqueness and
convergence of power series is available for instance in Ref. [15].

Firstly, we introduce q(j) or q(f) from the set of Eq. (41), along with
their first and second derivatives, in the set of Eq. (39). For the infinite
series to be a solution, the ensuing coefficients of each of the (j� 1),
(f� 1) terms should be zero. After the algebra is done, the following
system of algebraic equations for the coefficients ai is obtained:

1) For the hyperbolic pin fin,

2ð1þ 2ahÞa2 � 2ð1� bhÞa1 � 2cha0 ¼ 0 (42a)
3$2ð1þ 2ahÞa3 � 2½2ð1� bhÞ � ð1þ 6ahÞ�a2

�ð2ch � 4bhÞa1 � 4cha0 ¼ 0 (42b)

i ¼ 2;.;N; ðiþ 2Þ ðiþ 1Þ ð1þ 2ahÞaiþ2

�ðiþ 1Þ ½2ð1� bhÞ � ið1þ 6ahÞ�aiþ1

�½2ch � 4bhi� 6ahiði� 1Þ�ai

�½4ch þ ði� 1Þð � 2bh � 2ahði� 2ÞÞ�ai�1

�2chai�2 ¼ 0 (42c)

2) For the trapezoidal pin fin,
2ð1þ 2atÞa2 þ 2ð1� btÞa1 � 2cta0 ¼ 0 (43a)

i ¼ 1;.;N; ðiþ 2Þ ðiþ 1Þ ð1þ 2atÞaiþ2

þðiþ 1Þ ½2iþ 2ð1� btÞ�aiþ1 þ ½iði� 1Þ
þ2ið1� btÞ � 2ct�ai � 2ctai�1 ¼ 0 (43b)
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3) For the concave parabolic pin fin,

2
�
1þ 2ap

�
a2 þ 2

�
2� bp

�
a1 � 2cpa0 ¼ 0 (44a)
3$2
�
1þ 2ap

�
a3 þ 2



4þ 2

�
2� bp

��
a2 þ

h
4
�
3� bp

�
� 2cp

i
a1

�4cpa0 ¼ 0 (44b)

i ¼ 2;.;N; ðiþ 2Þ ðiþ 1Þ
�
1þ 2ap

�
aiþ2

þðiþ 1Þ


4$iþ 2

�
2� bp

��
aiþ1 þ

h
6iði� 1Þ

þ4i
�
3� bp

�
� 2cp

i
ai þ

h
4ði� 1Þ ði� 2Þ þ 2ði� 1Þ

�
6� bp

�
�4cp

i
ai�1 þ

h
ði� 2Þ ði� 3Þ þ 4ði� 2Þ � 2cp

i
ai�2 ¼ 0 (44c)

Application of the two boundary conditions for the hyperbolic
pin fin as given by Eq. (17) provides
Fig. 4. Dimensionless temperature profile for smooth pin fins
a0 þ
XN

aiðx� 1Þi¼ 1 (45)

i¼1

a1 ¼ 0 (46)

Similarly, application of the two boundary conditions for the
trapezoidal and concave parabolic pin fins as given by Eq. (18)
leads to

a0 ¼ 1 (47)

a1 þ
XN
i¼2

iaiðu� 1Þi�1¼ 0 (48)

For the determination of the heat transfer rates, via the fin
efficiencies defined by Eq. (22), the following trio of equations
arises
(3¼ 0): a) hyperbolic, b) trapezoidal, c) concave parabolic.
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Fig. 5. Fin efficiency versus thermal length for smooth pin fins (3¼ 0): a) hyperbolic, b) trapezoidal, c) concave parabolic.
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hh ¼ �
k
h

Ab

As

1
xt

"
a1 þ

XN
i¼2

iaiðx� 1Þi�1

#
(49a)
Table 1
Maximum fractional errors fq for the calculation of temperatures of rough micro-pin
fins by the power series (L/rt¼ 10, Bi¼ 2�10�3).

3 f8 f9 f10 f11 f12

Hyperbolic 0.05
0.10
0.15

0.0003
0.0003
0.0002

0.0003
0.0002
0.0002

0.0002
0.0001
0.0001

0.0001
0.0001
0.0001

0.0001
0.0001
0.0001

Trapezoidal 0.05
0.10
0.15

0.0002
0.0002
0.0002

0.0002
0.0002
0.0002

0.0002
0.0002
0.0001

0.0001
0.0001
0.0001

0.0001
0.0001
0.0001

Concave parabolic 0.05
0.10
0.15

0.0001
0.0001
0.0001

0.0001
0.0001
0.0001

0.0001
0.0001
0.0001

0.0001
0.0001
0.0001

0.0001
0.0001
0.0000
ht ¼ �
k
h

Ab

As

1
zb

a1 (49b)

hp ¼ �
k
h

Ab

As

1
zb

a1 (49c)

Finally, for the computation of the fin effectivenesses defined by
Eq. (23), the trio of equations turns out to be

Eh ¼ �
k
h

1
xt

"
a1 þ

XN
i¼2

iaiðx� 1Þi�1

#
(50a)

Et ¼ �
k
h

1
zb

a1 (50b)

Ep ¼ �
k
h

1
zb

a1 (50c)
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The cross-sectional area at the base and the lateral surface area
of the rough pin fins have been averaged for the calculation of the
efficiencies and effectivenesses, incorporating the modifier factors
1þ 232 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

s

q
arising in Eqs. (30) and (35) respectively.

Conceptually, a convergent infinite series is by definition iden-
tical to the exact solution. If instead a finite number of terms n is
retained, an approximate solution is obtained, which can be accu-
rate and easier to evaluate. The key step is to test the convergence
of the series by comparing the approximate solutions obtained
from the shortened series qn(j) or qn(4) against the exact solution
q(j) or q(4). Since the latter is not undertaken for the rough fin, we
proceed for the smooth micro-pin fins i.e., for the particular situ-
ation with 3¼ 0 and ms¼ 0 as given by Eq. (21). Once an appro-
priate number of terms n is selected, we extend the truncated series
to incorporate the effect of the surface roughness. In absence of the
exact solution, a criterion of relative convergence is applied to
assure the accuracy of the solution.
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Fig. 6. Effect of surface roughness on temperature profile of micro-pin fins (L/rt¼ 10,
5. Presentation of results

The exact temperature distributions come from the evaluation
of the set of Eq. (21), the exact fin efficiencies from the set of Eq. (22)
and the exact fin effectivenesses from the set of Eq. (23). They have
been conveniently computed with the software Mathematica [12].
The approximate temperature distributions qn(j) or qn(f) and the
approximate fin efficiencies and effectivenesses hn and En have
been calculated by means of a short computer program written for
that purpose.

The three-part Fig. 4 displays dimensionless temperature q on
the ordinate and dimensionless coordinate j or f on the abscissa
for a given geometric ratio x or u. As the third, independent
parameter, we use the dimensionless fin parameter mL (sometimes
called the fin ‘‘thermal length’’). It is a matter of algebra to deduce
the relationship with the original variable, viz., the extended Biot
number Mh, Mt, Mp in Eq. (21):
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Bi¼ 2�10�3): a) cylindrical, b) hyperbolic, c) trapezoidal, d) concave parabolic.
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mL ¼
ffiffiffi
x

p
ð1� xÞMh ¼

L
rt

x

ffiffiffiffiffi
Bi
2

r
(51a)

mL ¼ ð1� uÞMt ¼
L
rt

u

ffiffiffiffiffi
Bi
2

r
(51b)

mL ¼ ð1� uÞMp ¼
L
rt

u2

ffiffiffiffiffi
Bi
2

r
(51c)

We use mL since this is very common in fin theory and also because
its value is less than unity for normal applications. For future
reference, we also include in Eq. (51) the Biot number Bi; in this
way, mL is related with the pairs (Mh, x), (Mt, u), (Mp, u) or the pairs
(Bi, x), (Bi, u) for L/rt¼ const.

The results plotted in Fig. 4, provided for arbitrary geometric
ratios x¼½ and u¼½, indicate that temperature distributions are
predicted very accurately by the approximate 8-term series q8.
Maximum discrepancies arise in the tip temperature for the largest
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Fig. 7. Effect of surface roughness on efficiency of micro-pin fins (L/rt¼ 1
mL; they amount to 0.02%, 0.56% and 2.09% of the exact values, for
the hyperbolic, trapezoidal and concave parabolic pin fins,
respectively. Even the approximate temperature predictions with
a shorter 5-term series q5 are fairly good; this is especially true for
low mL values (as will be the case in practical applications).

In Fig. 5, the fin efficiencies h of the basic smooth pin fins are
represented versus mL for the same geometric ratios x¼½ and
u¼½. Calculations with the shortened 10-term series h10 lead to an
accurate prediction, the maximum differences being between
0.03% and 0.67% of the exact values. As in Fig. 4, the error is the
largest for the concave parabolic pin fin, which suggests a direct
influence of volume optimality.

It should be emphasized that the predictions shown in Figs. 4
and 5, given in terms of dimensionless groups, are valid for any
broad heat transfer application and not only for specific arrange-
ments used in micro-devices. Conversely, these figures also serve to
initially test the number of terms that could be expected for rough
micro-pin fin simulations. To this purpose, the following ratios are
used to test the convergence of the series within a fractional error:
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Fig. 8. Effect of surface roughness on effectiveness of micro-pin fins (L/rt¼ 10): a) cylindrical, b) hyperbolic, c) trapezoidal, d) concave parabolic.
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fq ¼
qn � qn�1

qn

 < e (52a)

 

fh ¼
hn � hn�1

hn

 < e (52b)

fE ¼
En � En�1

En

 < e (52c)

Table 1 summarizes the errors associated with the approximate
temperature computations of rough micro-pin fins when the
number of terms is progressively increased. These results have been
obtained for a representative example: typical values for micro-pin
fins dimensions (rt¼ 5 mm, L¼ 50 mm), Biot number Bi¼ 2�10�3,
and three values of the relative roughness 3¼ 0.05, 0.10, 0.15, as
suggested in Ref. [9]. As stated above, validity of the rough fin
model is only warranted for a relative roughness 3� 1, but we
retain a range 0–0.15 for comparison purposes. In most
applications, 3 will typically be lower than 0.05. In addition, to
proceed with the calculations, we have selected the following
empirical expression for the mean absolute slope of the surface
roughness [14]

ms ¼ 0:076s0:52 (53)

where s is in micrometers. It is clear from Table 1 that increasing
the number of terms beyond z8 does not yield any significant
improvement of accuracy. For this reason, we have taken the
predictions given by q8 to simulate the temperature patterns in the
micro-pin fins in an adequate manner, even though a smaller
number of terms would have likely produced acceptable results.
The same procedure has been applied to the prediction of efficiency
and effectiveness of the rough pin fins: to assure a convergence
error lower than 0.5% for all computed cases, 10-term series are
required for the hyperbolic and trapezoidal simulations and 12-
term series for the case of the concave parabolic pin fin.
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Fig. 6 pictures the effect of surface roughness on the tempera-
ture distribution along the fin length, as calculated by the power
series. We have also included, for comparison purposes, results for
the constant-diameter case; its exact analytical solution can be
consulted in Ref. [9]. The results obtained for variable diameter
follow the same trend; differences in absolute values for the
temperature descent come both from the different profile geom-
etry and from the different fin base radius rb (for which the Biot
number is defined).

Temperature trends are confirmed by the calculation of fin-
quality ratios. Fig. 7 displays the effect of the relative roughness 3 on
the efficiency h, taking as a reference the efficiency for the smooth
geometry. Three different values of Biot number Bi¼ 2�10�5,
2�10�3, 2�10�2 have been included, preserving a difference of
three orders of magnitude. Even for values of 3� 0.05, the effect on
fin efficiency can be substantial: an increase up to 25–40%, which is
fully coherent with the original calculations of Ref. [9]. Fig. 8
displays the effect on the effectiveness ratio Erough/Esmooth, showing
a similar trend. In all the graphs, we see that the benefit gained with
roughness is the largest for hyperbolic pin fins and the smallest for
concave parabolic, and so is the parametric effect of Bi and 3; this is
again related to volume optimality.

As for the reasons of this significant improvement of fin
performance, some insight can be gained by comparing Eq. (15) for
smooth fins with Eq. (38) that incorporate the modeled effect of
roughness. For the example of a hyperbolic fin with x¼ 0.5 and
a value of roughness 3¼ 0.05, the coefficients of the three terms of
the equation increase for the rough case with reference to the
smooth one in the following relative magnitudes:

� Term in d2qh=dx2: 0.5–2%.
� Term in dqh=dx: 13–106%.
� Term in qh: 0.14%.

The ensuing analysis is thus rather clear. According to the
statistical model of rough fins, the increase in efficiency (30–40% in
this case) is mostly due to the first derivative term, i.e., to the
correlation of radius and roughness slope. A much minor contri-
bution can be attributed to the increase of cross-sectional area
(second derivative). The increase of perimeter (independent term)
is negligible.

Even considering the fact that a change of coefficients of
a differential equation, even a linear one, cannot be directly related
to the change in its solution, this is of course interesting and
perhaps deserves more investigation. In this respect, the original
application of the model [9] deals with a constant-diameter fin, and
thus always changes the first derivative term in an infinite relative
amount, since this is indeed absent for the smooth geometry.
6. Conclusions

The influence of a random, isotropic surface roughness on
truncated micro-pin fins of variable diameter has been investigated
for the hyperbolic, trapezoidal and concave parabolic geometries.
Theory for the geometric effect of surface roughness presented in
Ref. [9] has been generalized to this purpose. Since resulting
equations are very complex, an approximate method has been
adopted. Results are in accordance with those found for constant
diameter [9], exhibiting significant improvements in thermal
performance.

The approximate method is based on truncated power series.
Approximate 5- to 8-term series are accurate for the prediction of
temperature distributions, and 8- to 12-term series serve to accu-
rately estimate the efficiency and effectiveness in the case of
smooth pin fins. Relative convergence studies show that these
figures are practically the same for rough micro-pin fins. The
method is easily manageable, offering considerable economy
without sacrificing reliability. It can also facilitate the treatment of
other smooth or rough micro-geometries of pin, straight and
annular fins.
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